
r)A715 826 MARYLAND UNIV COLLEGE PARK DEPT OF INFORMATION SYSTEETC F/6 9/2
ON THE SPECIFICATION OF DATABASE SEMANTIC INTEGRITY.(U)

SEP 79 M L BRODIE DAAG297a-G0162N

IJACLASSIFIEO N

EIENhEh
EEW~~Eh

EE[L

ON THE SPECIFICATION OF

DATABASE SEMANTIC INTEGRITY)

191

I . ~ 9 ~ 2 2 ''

THE DEPARTMENT OF

INFORMATION SYSTEMS MANAGEMENT

UNIVERSITY OF MARYLAND

COLLEGE PARK, MD. its

.9 ,_, 20742 . i
//.,I/,,

e0

Table of Contents

Abstract

1. Introduction 1

2. Conceptual Framework and Approach

2.1 Conceptual Framework *. 3

2.2 Structure versus Behaviour 3

2.3 Database Constraints 4

2.4 The Data Type Approach 4

3. Data Types in Programming Languages

3.1 Abstraction 6

3.2 Abstraction and Data Types 7

3.3 A Data Type Specification Model... 8

4. Data Types in Databases

4.1 On Differences Between Data Types and Databases..9

4.2 The Limited Generic Database Model 10

5. Beta: A Schema Specification Language

5.1 Purpose and Basis of Beta 15

5.2 The Semantics of Betas..... 16

5.3 Formal Aspects ,..... ,.. ..18

5.4 Programming Language Aspects.......... .. 9

5.5 Database Design Using Beta 20

6. Summary23

References

A..

Abstract

/-Semantic integrity is fundamental to the correct application
and use of database systems. A database exhibits semantic
integrity if it is logically consistent and complete with
respect to the "real world' application being modelled.
Although the evaluation of semantic integrity relies on
intuition to a large degree, database models should facilitate
its demonstration. To meet these requirements database models
must be rich enough to permit the specification of the
necessary semantics and to support the verification and
validation of consistency.

Database, programming language, and artificial intelligence
concepts are integrated and extended to provide tools and
techniques for improved database semantic integrity.
Artificial intelligence concepts are applied to improve the
semantic power of database models. Data type concepts are
extended to accommodate databases and vice versa. The result
is a semantically rich database model, 6ased on data type
concepts, and a schema specification language which integrates
these concepts. This approach permits data type concepts to
be applied directly to databases. It is argued that database
semantic integrity can be improved through specification and
verification tools and techniques based on data type concepts.
The role of axiomatization to formalize both the database
model and its data language is described. Software
engineering tools are applied to database design.

Keywords and Phrases: database,- data type, databise
semanLics, database schema, database model, programming
languages, austract data types

CR Categories: 4.33, 4.34, 4.22, 5.24

On the Specification of Database Semantic Integrity

Michael L. Brodie

Department of Computer Science

University of Maryland

College Park, MD 20795

1. Introduction

Database concepts have evolved in a pragmatic, informal way
somewhat independent of related developments in programming
languages, artificial intelligence (AI), and other areas.
This may be due, in part, to the practical aspects of data
processing and to the genuine need for ideas and approaches
not offered in other areas. The result.has been a myriad of
informally defined database terms and a multitude of database
models with little theoretical base. However, the study of
databases is an application area which shares many problems
and goals with other computer science disciplines. In
particular, problems of information representation and
reliability are pervasive. The database area has reached a
mature stage and it may now be appropriate to apply some
well-known results from related areas to databases in order to
formalize some basic database concepts and to address problems
of database semantic integrity.

Semantic integrity is fundamental to the correct application
and use of database systems. A database application exhibits
semantic integrity if the properties represented by the
database together with its schema and transactions is
consistent and complete with respect to the "real world"
application bcing modelled. This intuitive notion can be made
more precise by means of a written specification of those
properties that must be represented. A specification acts as
a definition of the semantics or meaning of the application
aod provides a basis for verification.

DZtabase models can be designed to support the specification
and verification of database semantic integrity. Such
database models must permit the specification of the desired
properties anti facilitate the verification and validation of
those properties. A schema specification is verified by
ensuring that the rules of the database model are obeyed and
that no descriptions are incomplete or are inconsistent. A
database is validated by ensuring that the data values satisfy

Page 2

the specified properties. A database application that has
been verified and validated with respect to a specification is
said to exhibit semantic integrity.

Unfortunately, database tools and techniques currently
available to ensure semantic integrity are inadequate.
Conventional database models are semantically weak; they
cannot be used to express many necessary properties using
non-procedural means (Schmid and Swenson 1975; Brodie and
Scnmidt 1978; Kent 19791. A large number of semantic
database models have been introduced [Abrial 1974;
Roussopoulos 1975; Biller and Neuhold 1978; Hammer and
McLeod 1978] to address some of these issues, however, there
has been little attempt to give formal definitions of the
semantics of these models.

The consequences of these problems place severe restrictions
on the design, construction, analysis, and use of databases.
Since the semantics of database models are not rich and are
poorly understood, it is difficult to design databases with
the desired properties. Means beyond the database model are
required to express and enforce various properties.
Typically, these metnods are procedural and are applied in an
ad hoc manner. Databases with such constraints are difficult
Eo construct and costly to run. Due to the lack of a
theoretical base, analysis for consistency and completeness,
and comparisons with other schemas are very nearly impossible.
All of these factors contribute to the difficulty for a user
to comprehend a database adequately.

This paper contributes to solutions for some of the above
problems. These contributions draw on results from
programming languages and AI both of which have problems and
goals in common with databases. Databases and programming
Idnguages are concerned with data reliability -- ensuring that
the data in a system obeys specified properties [Hoare 1975].
From programming languages we apply data type concepts to
databases in order to formalize some database concepts, to
improve the semantic power of data models, and to integrate
some aspects of databases and programming languages.
Databases and AI are concerned witD the representation of
knowledge [Wong and Mylopoulos 1977). From AI we emphasize
the importance of intensional information in the schema. A
conceptual framework is given in section 2. Section 3
introduces abstraction mechanisms for programming languages in
order to accommodate the inherently complex and semantically
rich database problems. A data type specification model is
defined. Section 4 presents a new, semantically rich database
nodel based on an algebra of data types. Finally in section
5, Beta, a database schema specification language, is
discussed.

Page 3

2. Conceptual Framework and Approach

2.1 Conceptual Framework

Figure 1 illustrates four progressively more abstract levels
in which to consider database description and storage.

database model theory

I
database model

database schema

database

Figure 1: Conceptual Framework for Database Description and
Storage

A database is a collection of data values that satisfy a given
schema; it represents a state of some application at a fixed
time. A database schema is a collection of rules that
describe and restrict a class of databases; it represents all
possible states of the application. A schema must obey the
rules of a particular database model. A database model
includes a collection of rules (expressed in formally
definable data structures) that define a class of schemas.
Database model theory is the level at which all database
models may be discussed and compared; several such theories
are now beginning to emerge.

2.2 Structure versus Behaviour

Typically, the levels of the conceptual framework have been
considered in terms of structural, rather than behavioural,
properties. Structural properties of a database determine the
possible databases or database states. Por example, a schema
describes a class of databases by means of declarative,
non-executable data definition language (DDL) statements.
Behavioural properties of a database determine the possible
state transitions which are described procedurally by
executable data manipulation language (DML) statements.
Generally, behaviour is not defined in the schema. In many
areas of computer science it has been found that some
properties can be described either as structure or as
behaviour. This duality can be seen in the lack of
distinction between DDL and DML in both the relational and
DBTG data models.

Page 4

Structural descriptions cannot capture all the properties of a
database application, however, for several reasons it is
important to investigate the extent to which semantics can be
expressed and maintained via structure. First, the emphasis
in the database area has been on data with persistent
structural properties rather than on operations which may
change through time. Second, some structural descriptions are
more simple, concise, and abstract than are their behavioural
counterparts. For example, a structural relationship between
two entity types might affect all modification operations on
each entity type. Third, structural descriptions are more
conveniently understood and analyzed than are behavioural
descriptions. Finally, well-known tools exist for the
description and analysis of structural properties; these can
be used for the specification, verification, and maintenance
of database semantics.

2.3 Database Constraints

The most common method of increasing the semantic power of a
database model is via constraints. Constraints have been
viewed as those properties of the "real world" application
that the database must obey but which cannot be expressed
directly in terms of the database model being used. Since the
ability to express various properties varies from one database
model to another, the constraint concept has been database
model dependant. This view is troublesome for the desiqn,
analysis, and comparison of schemas, particularly for
multiple, coexisting schemas [ANSI/SPARC 1977]. Here, we
define a constraint to be any property of the "real world"
application that must be represented in the database for
logical completeness. This definition brings several insights
to the analysis of databases. Some constraints are inherent
in the database model being used; some are stated explicitly
via DDL or DML statements; still others are implicit,
inferred from inherent and explicit constraints. For example,
the dependency constraint inherent in the hierarchical
database model must be stated explicitly when using the
relational model, and the closure of a set of functional or
multivalued dependencies [Bernstein 19761 is an implicit
constraint which can be inferred from a smaller set of
explicitly stated dependencies.

2.4 The Data Type Approach

In their development from data files, databases have not used
the data type concept explicitly, whereac data types have bt.en
fundamental to the development of programming languages. The
advantages of abstract data types KITskov and Zilles 1974,7 ;
Guttag 19751 ha ..e been considered, briefly, for databases
[ilammer 1976; Biodie and Schmidt 1978]. Also, Schmidt []9'/,
has considered date types for the definition of relations in
an extension to P. c-l.

Page 5

Data types provide many benefits for dealing with the
structural aspects of databases. This is due to the close
correspondence between the main purposes of data types and the
needs of databases, namely:
(1) formal description of structural (and some behavioural)
constraints,
(2) automatic maintenance of constraints, and
(3) recognition and generation of instances of abstract
objects.

In the sequel, it will be shown that many data model criteria
[McGee 1976] can be addressed via data type concepts.
Traditionally, data types have been the meeting point for both
logical (user) ahd physical (implementor) requirements.
Although there are many advantages for database
implementation, we will consider the advantages for database
design and analysis necessary for ensuring semantic integrity.

!4

Page 6

3. Data Types in Programming Languages

3.1 Abstraction

Abstraction, the most powerful intellectual tool, has been
used extensively in computer science in developing our
understanding of complex phenomena [Hoare 19721. In this
section, abstraction is used to extend data type concepts and
to relate them to the conceptual framework for databases. The
ideas are then used to develop a data type specification
model.

We will be concerned principally with two forms of
abstraction: generalization and aggregation [Smith and Smith
1977] which are based on the is-a and part-of relationships in
semantic networks [Roussopoulos 1975]. Generalization enables
a class of objects to be thought of as a single generic
object. In particular, types can be generalized from tokens.
A token is a data value which can be contained in an instance
of an abstract object whereas a type is an abstraction that
stands for a class of tokens. Aggregation enables a
relationship between (constituent) objects to be considered as
a higher level aggregate object. For example, the generic
type furniture item stands for a class of tokens including
actual chairs and tables while the aggregate chair may have
the constituents legs, seat, and back.

Generalization aids our understanding of phenomena by allowing
classification. Objects are classified so as to emphasize
their similarities and to ignore their differences.
Generalization can be applied repeatedly to types resulting in
a generalization hierarchy which has a downward inheritence
property. Each property of a generic type is inherited by all
its subtypes, however, a subtype may have properties that
distinguish it from other subtypes. In the furniture example,
chairs and tables have similarities as furniture and
differences which distinguish chairs from tables.

Aggregation aids our understanding of a phenomenon through
structure. The structure of an object can be seen in terms of
the relationship amongst its constituents. The repeated
application of aggregation results in an aggregation hierarchy
which has an upward inheritence property. Each property of a
constituent becomes a constituent property of the aggregate.
The inverse process, stepwise refinement, produces an
hierarchical breakdown of an object into its constituents
which in turn can be broken down further.

Generalization and aggregation can be used in a complementary
fashion to express both the structure and classification of
objects: aggregates can be classifi-d and generic objects can
be structured. Hence, a complex phenomenon can be considered
in laycrs of abstraction. The major advantage of abstraction
is that properties can be considered in isolation and
inecsential details caii be ignored.

-

Page 7

3.2 Abstraction and Data Types

In programming languages, aggregation has long been used to
express the structure of data types, however, typically
generalization has not been used to express relationships
amongst types. Aggregation is a fundamental composition rule
used to define structured types, such as records and arrays,
from simpler constituent types. We propose to extend the data
type concept by including generalization. as a powerful
composition rule for data types. The resulting data types are
both semantically rich and facilitate the representation of
complex objects frequently found in database applications.

Data type concepts can be described in terms of three forms of
generalization. Token generalization is applied to tokens and
produces data types. Type generalization can be applied to
data types resulting in more complex types. Category
generalization is applied to data types to produce data type
categories which are sometimes called data structures. For
example, the record data type category is a generalization of
all record types, e.g., employee and department. In turn, the
employee record type is a generalization of data values, e.g.,
employees Fred, Tony, and Yannis.

Observing that each level of the conceptual framework is
related to the next by generalization, we can relate data type
and database concepts as shown in Figure 2, A database is 3
collection of tokens in instances of data types in a schema.
1. -chema is a collection of data types which represent the
constraints of the "real world" application. A database model
includes a formally definable collection of data type
categories. Database model theory corresponds to the theory
of data structures.

database model theory theory of data structures

database model collection of data type categories

database schema collection of data types

database, collection of data value-s

Figute 2: Corr 4,pondence between D,.taha.;os and Data Types

74

Page 8

3.3 A Data Type Specification Model

To conclude this section, abstraction is used to define the
data type concept and a data type specification model.

Hoare's stages of the abstraction process [Hoare 1972) can be
used to define the essential aspects of the data type concept.
The aspects are: (1) Abstraction: the object, the type
itself, that results from abstraction applied to classes of
types and tokens. (2) Representation: the set of symbols
chosen to stand for the type and its tokens. There is both a
storage representation, the mechanisms used to map tokens into
storage, and a logical representation, the mathematical
properties of the symbols used. (3) Manipulations: the
transformation rules for representation, the specific
operators for tokens of the data type. (4) Axiomatization:
the rigorous statements of the definitive properties of all
instances. For a given type, these aspects consitute a data
type specification.

We now present a model for specifying data types, based on the
above development and on a model proposed in [Gotlieb and
Gotlieb 1978]. The model presented here has been used to
define [Brodie 1978], formally, the database model presented
in the next section.

A data type- name, say t, is used to denote the abstraction.
The logical representation is defined by the triple: <V(t),
ID(t), C(t)> where V(t) is the value set (i.e., a set of
tokens) for t, ID(t) is the identification rule for variables
of t, and C(t) is the set of constituent types used to compose
t. The storage structure is defined by the triple: <ID(t),
M(t), SMF(t)> where M(t) is the set of memnry locations in
which tokens of t may be stored and SMF(t) is the storage
mapping function that maps identifiers from ID(t) to memory
locations in M(t). The SMF(t) is a principal part of the
instance-of or binding relationship between t and its
instances which contain tokens. The manipulations O(t) is the
set of operators for which values from V(t) may serve as
operands. O(t) corresponds to the syntactic specification in
[Guttag 1975]. The axiomatization c.f. [Hoare 1972) and
(Guttag 1975]) is defined by the triple: <AC(t), AV(t),
AO(t)> where AC(t) is a set of axioms defining the way in
which t is composed from its constituent types C(t). AV(t) is
a set of axioms defining the properties bf values in V(t).
AO(t) is a set of axioms that define the operators named in
0(t). AO(t) corresponds to the axioms proposed in [Guttag
19751 which give the semantics of operations, in some sense.
In summary, a data type, t, can be specified by the tuple:
<V(t) , C(t), ID(t), SMF(t), M(t) , O(t) , AC(t) , AV(t) , AO(t) >.

Page 9

4. Data Types in Databases

4.1 On Differences Between Data Types and Databases

There are five major differences between data types and
databases. The differences concern data independence,
problems of scale, type checking, dynamic aspects of
instances, and data sharing. These differences can be
resolved so that data types can be applied to databases.

A fundamental difference between programming languages and
databases has been the relative importance of algorithms and
data. Stepwise refinement advocates postponing data structure
decisions until algorithms are designed. In databases, data
structures must be designed without knowing what algorithms
will be applied. The approach to data types and databases is
now changing. One of the principal goals of both databases
and abstract data types is an ability to design and alter
representations without unduly impacting programs or data.
This necessitates a flexible binding mechanism.

Since database systems typically consist of several large
programs accessing large volumes of highly interrelated data,
problems of complexity due to scale and semantics are
inherent. Due to the need for data independence and data
relatability, scope and modularity, the two data type concel ts
most effective for managing large numbers of data types, do
not readily apply to databases. The multiple schema concept
is still unclear and problematic [Pelagatti et al. 1978].
Aggregation and generalization have been applied expressly to
to address problems of semantics and scale. They facilitate
the construction of abstract views which exclude inessential
details. Abstraction mechanisms also permit the expression of
semantic not expressible using other database models.

A third difference is that the weak type checking and
compatibility rules of most programming languages are not
adequ'ate for database problems. For example, in Pascal
[Jensen and Wirth 1974] and Euclid [Lampson et al. 1977] the
following two types are the same, hence, compatible:

type height = 1..10;
te weight = 1..100;

• - Consequently, meaningless relational algebra operations cannot
be detected automatically. Hence, strict type compatibility
rules are required.

A fourth difference concerns the dynamic aspects of instances.
Typically in programming languages, there is a one to one
correspondence between identifiers and instances; their
number is known in advance. A database is initially empty;
instances are created and possibly destroyed in a series of
ptogram invocations. Hence, a dynamic indentification
mvchanism for instances is required.

Page io

A final difference is that the persistence and sharing of data
is fundamental to databases but is seldom supported in
programming languages. Typically in programming languages
when the scope of a variable is exited, the instance is lost.
Imported, exported, and own variables have been introduced
(e.g., see Euclid [Lampson et al. 19771) to reduce the
sharing of instances amongst scopes. In databases, successive
or concurrent invocations of the same or different programs
must be able to access the same data values.

The differences concerning a flexible binding, dynamic
identification, sharing, and persistence can be resolved by
including the database concept of key as an identification
rule for data type instances. A key is some subset of the
constituent types of a data type whose values uniquely
identify instances. One consequeence of this inclusion is
that prime constituents, those taking part in a key, may not
be altered without destroying the containing aggregate
instance and creating a new one. Another typical consequence
is that keys cannot assume null values since this would
violate the uniqueness rule. The inability to assume given
values or to have certain components altered is, generally,
not the case for instances of data types.

4.2 The Limited Generic Database Model

This section presents a database model wtrich incorporates the
above solutions. The concept of a data type algebra is
introduced and is used to define the semantics of the database
model. The model is based on two simple concepts, objects (or
entities) and relationships used to compose or relate objects.
The database model incorporates the essential rather than all
properties of the hierarchic, network, and relational database
models, hence, it is called the limited generic database model
(LGDM).

For a given database model, a data type algebra consists of
the data types that correspond to the data type categories of
the model plus the type operators used to compose those types.
A data type algebra is used to specify database schemas. A
definition of a data type algebra is also a definition of the
properties of all schemas within the datbase model. These
properties have been called the semantics of the database
model. The LGDM is described here in terms of the LGDM data
type algebra. First the data type categories are presented,
then the type operators are given. A more detailed definition
of the LGDM and of the data type algebra is given in [Brodie
1978].

The LGDM has two categories of unstructured types, base types
and interpreted types, and four categories of structured
types: attributes, object types, map types, and set types.

The base types: integer, Boolean, char, enumeration, and
subrange are taken from Pascal. Their properties are defined
by well known axioms [Hoare 1972]. The base type string is a

Page 11

sequence of characters much like Pascal's packed array [l..n]
of char.

Interpreted types are introduced to permit the distinction
between semantically different types based on the same
underlying type. An interpreted type is a particular use of a
base type that is distinguished from all other types having
the same underlying type by means of a type identifier. The
identifier may be considered a units name. Two types are
compatible if and only if they are based on the same
interpreted type. The value set, the value axioms, and the
relational operators are inherited from the base type,
although the order axioms and the corresponding relational
operators can be excluded by specifying "unordered". The
remaining type properties are not inherited. For example, the
interpreted type (denoted by @)

type employee_number = @(l..100) unordered;

does not inherit arithmetic or relational (except <> and =)
operators which in this case have no meaning. The interpreted
type concept is based on opaque and transparent types in
[Morris 1973], on labelled modes in ELI [Wegbreit 1974), and
on the interpreted type in [Schmidt 1978].

An attribute is a particular use, within an object type, of an
interpreted type or another object type and an identifier. An
attribute identifier is used to denote the role it plays
within the object type. An attribute is simple if the
underlying type has one constituent, otherwise it is
non-simple. Non-simple types provide a degree of abstraction
and modularity; they can be treated as aggregates in several
object types.

An object type is an aggregate of attributes. Its value set
is a Cartesian product of the value sets of the constituent
attributes. An object type must have at least one key so that
instances can be identified uniquely. Instances of object
types can have independent existences within a database,
whereas, attribute instances exist within the context of an
object type instance. No object type instance contains a
variable number of tokens, hence, they follow the principle of
first normal form which has advantages for both data types
[Hoare 1972] and databases [Codd 1970]. An object type
instance corresponds to a tuple in the relational database
model.

A map type represents a binary relation between two, possibly
identical, object types. The map type is introduced for both
semantic and performance improvements over the join operation
in the relational algebra. Each binary relationship between
object types must be defined explicitly in a map type thereby
reducing the possibility of creating meaningless associations.
Maps represent relationships as distinct from objects. They
indicate the needed access paths. Map types can be used to
represent single member DBTG owner-coupled sets, joins, and
hirrarchic relationships.

Page 12

A set type is a powerset of its constituent object or map
type. At a given time, a set type is restricted to having
only one instance which is a set of instances of the
underlying type. An instance of a set type based on an object
type corresponds to a relation in a relational database.

A data type algebra has two kinds of operators: schema level
operators, called type operators, and database level
operators, called token operators. Type operators are used to
define new types from existing types. For a type T, a set of
type operators forms the composition axioms or rules, AC(T),
used to compose T from its constituent types, C(T). Token
operators produce new tokens from tokens in instances in a
database. For a type T, a set of token operators, with syntax
given by O(T) and behavioural semantics given by AO(T), define
the legal manipulations of values of V(T). Type and token
operators are related intimately. Type operators can be
defined by applying a sequence of token operators to elements
of the value sets of the constituent types thereby producing a
value set for the new data type. For a complete specification
of a data type, both token and type operators must be defined.

In keeping with our structural approach, we consider only the
following token operators which are necessary to define the
LGDM type operators, i.e., those for value selection and
testing. The selection operator [Hoare 1972] is used to
select a component value from an instance of a structured
type. The relational (i.e., <,<=,=,>=,>,<>) and the Boolean
operators are defined in the conventional way over
unstructured and Boolean values, respectively. The
de-interpretation operator takes a value of an interpreted
type and produces the corresponding value of the underlying
base type. It is similar to the LOWER primitive function in
ELl [Wegbreit 1974] but can be used only to alter the
compatibility of the value of a variable when compared with a
constant value. The above operations can be combined to form
predicates which are logical operators. Finally, the token
restriction operator is a logical operator which produces the
argument value when the predicate is satisfied, otherwise it
produces the null value. The remaining token operators (e.g.,
insert, delete, update, and arithmptic operators) are not
considered here.

The LGDM type operators form a set of composition rules which
can be used to express the complex structural relationships
required to represent the semantics of databases. They are
based on aggregation and generalization, and on the relational
algebra applied at the schema level rather than at the
database level. The type operators and the data types of the
LGDM form the data type algebra which generalizes the concepts
of data type and data structure discipline, e.g., as found in
Pascal. The eleven type operators are now introduced.

The interpretation operator takes one base type as an argumeint
and produces an interpreted type. It is similar to the mode
operator in ELI [Weghreit 1974].

The Cartesian product operator produces an object type from
two or more attributes. Instances of the resulting types are
tuples unlike the relations (i.e., sets of tuples) that result
from the extended Cartesian product in the relational algebra.
The result of the Cartesian product operator is similar to the
Cartesian product data type in [Hoare 1972).

The union, intersection, and difference operators each produce
an object type with a value set which is, respectively, the
union, the intersection, and the set difference of the value
sets of the two argument object types. Two object types are
compatible under these operators if they have the same key,
i.e., compatible prime attributes.

The projection operator forms a new object type from a subset
of the attributes of anoth-r object type. The resulting value
set is determined by applying the selection operator to each
element of the argument value set to select the component
values of the projected attributes with duplicate values
deleted. This corresponds to the relational projection.

The type restriction operator produces an object type that is
restricted to those elements of the argument value set that
satisfy a logical expression. The resultant value set is
determined by applying the token restriction oprator to each
element of the argument value set. The type restriction
operator coresponds to the relational restriction.

The division operator produces a data type with a value set
which is a subset of the value set of the first of the two
argument object types. The resulting value set is computed by
applying the relational division to the two arguments based on
some specified, compatible attributes.

The map operator relates two object types via a binary
relation and results in a map type. The resulting value set
is determined by applying the relational join operation to the
two argument value sets based on some specified, compatible
attributes.

The powerset operator produces a set type with a value set
which is the powerset of the value.set of the argument map or
object type. An instance of the resulting set type is a set
of values of the argument type.

Finally, the assertion (type operator) is the most general.
An assertion is an applied predicate calculus expression used
to express a logical relation over one or more object types.
We can regard this operator as having the effect that, a new
data type is produced with a value set that is those
combinations of the elements of the value sets of the argument

4 object types that satisfy the assertion. Strictly speaking,
no such single type results. A major advantage of assertions
is that complex relations and views can be defined
declaratively over existing types without affecting their
basic structure or composition -- a form of data independence.

I

Page 14

Type operators are used to express aggregation, via the
Cartesian product, and various forms of generalization.
Generalization is a concise method of expressing various
properties. If type A is a generalization of type B, then
every instance of B is also an instance of A. B is said to be
dependent on A, and the properties of A are inherited by B.
Generalization can be expressed by the set opreators: union,
intersection, difference, and division and by restriction and
projection (as long as one key is projected).

A schema that results from relationships expressed using the
data type algebra is a network of data types. The network
consists of one or more generalization hierarchies possibly
related via binary relationships between types in the
hierarchies. Each type can in turn have an aggregation
hierarchy of constituent types. Although the resulting schema
is complex, reflecting the semantics of the database, its
construction and understanding are greatly simplified by
abstraction which enables small aspects to be considered in
isolation.

Page 15

5. Beta: a Schema Specification Language

5.1 The Purpose and Basis of Beta

This section presents the underlying concepts and purposes of
Beta, a language for the specification of consistent schemas
based on the LGDM. The purpose of a schema specification is
to give a precise but succinct description of the constraints
that constitute a schema. Hence, Beta can be used to design
and express the semantic or logical aspects of a schema while
ignoring semantically irrelevant details such as
representation. A schema and its specification are consistent
if all the constraints can be proven to be mutually
satisfiable. The formal definition of Beta can be used as a
basis for consistency verification.

Beta provides a programming language framework in which both
database and data type concepts are integrated. The three
underlying purposes of data types -- constraint definition,
automatic constraint maintenance, and instance recognition --
are used to meet the needs of databases. The simple data
types of the LGDM are used to specify the complex constraints
of database appliciations. Beta draws heavily on both
programming language and database concepts. It is based on
the type concepts, syntax, and axiomatization nf Pascal
[Jensen and Wirth 1974]. Beta contains some clarifications of
(e.g., same type) and extensions to (e.g., legality
assertions) Pascal as defined in Euclid [Lampson et al. 19771
for the purpose of verification. Beta extends the ability of
Pascal/R [Schmidt 1977] to express constraints via structural
means. Finally, Beta is based on the LGDM, hence, it contains
the data type algebra.

The design of Beta was guided by several interrelated goals.
In particular, the data reliability and structuring goals of
[Hoare 19751 and those for type extensions and modes of
[Parnas et al. 1976] were considered. The primary goal,
however, was to address the data model and database problems
described in sections 1 and 2. Hence, Beta addresses three
main goals:
1) to provide a semantically rich schema specification
facility,
2) to provide a formal definition of data base semantics as a
basis for schema analysis, and
3) to provide a basis of a database design methodology.

This section describes four aspects of Beta. First, the
semantic power of Beta is illustrated by examples. Second,
the formal aspects of Beta are discussed. Third, some
programming language concepts are presented. Finally the use
and benefits of Beta are discussed for database design.

Page 16

5.2 The Semantics of Beta

This section demonstrates the semantic power of BeLa by
illustrating some of the expressible constraints with example
specifications. The examples are drawn from a university
database involving students, tutors, professors, and courses.

Using Beta, schemas can be specified in a modular fashion.
One may concentrate on simple constraints specified in simple
types over which more complex constraints can be specified.
The elementary specifications consist of constants, base
types, and interpreted types. These are used to construct the
more complex attributes, object types, and map types -over
which assertions, the most general specifications, can be
made.

Base types are used to specify value sets of atomic types.
Value sets can be enumerated explicitly or specified as
Booleans, characters, subranges, or strings. The minimum and
maximum length of strings can be specified. A specification
of an interpreted type, denoted by @, is used to interpret a
particular use of a base type. In example 1, postal_code and
course_#type are incompatible to ensure their semantic
difference.

Example 1.
type social insurance# = @(550000000..850000000);

postal code = @string[6..61of char;
course_#type = @strinq[6..6]thf char;
statustype = (full time, part time) unordered;
gradetype = (incomplete, F, pass, C_minus_, _C, plus,

B minus, B, B_plus, Aminus, A, A-plus);

The central type category, the object type, represents a class
of entities, the only instances capable of independent
existence. Object types are aggregates of attributes which
denote the roles played by underlying types. In example 2,
person is an aggregate of name, number, sex, address, and
title. Attributes can be simple, e.g., sex and title, or can
themselves be aggregates, e.g., addresstype may be composed of
street, city, province, and postal code. Other constraints
expressible over object types are keys, e.g., name and number
are equivalent keys for person, as well as functional (->) and
multivalued (->->) dependencies.

Example 2.
tp person = object name: nametype;

number: social insurance#;
. .* sex: (male, feiale) unordered;

address: addresstype;
title: (professor, tutor, student)
keys name, number
dependencies name->addresslsexltitle

end object;

As can be seen in example 3, generalization applied to object
types expresses several constraints in a succinct, modular

manner. Roles (Bachman and Daya 19771 played by object types
can be specified, e.g., person can play employee and student
roles. Generalization relationships between object types are
expressed by means ot object constructors, e.g., a student is
a particular kind of person. and set expressions, e.g., tutor
is the intersection of student and employee. Through
generalization inheritence, student and employee have all the
properties of person. Additional properties are used ti
distinguish object types from their generic types, e.g.,
employee has deduction and salary plus an additional
multivalued dependency. Generalization implicitly specifies a
dependency constraint between object types, e.g., a student
(role) exists only if a corresponding person exists.

Example 3.
type employee

object [each p in person where p.title - professor
or p.title = tutor];

salary,
deduction: moneytype
dependencies person->->salary

end object;

student =
object [each p in person where p.title = studentor p.title = tutor);

status: statustype;

academic_year: (first, second, third,
fourth, special)

end object;

tutor = object employee*student end obic__t;

A set type specification associates an identifier with the
implicitly defined set type for the underlying object or map
type. For a given database, a set type has exactly one
set-valued instance, i.e., the set of existing instances of
the underlying type. In a given university database, the
instance of people consists of all person instances.

Example 4.
type people = set of person;

A map type specifies a binary relation between two object
types by stating how an instance of one object type can by
related to a quantified set of instances of a second object
type. Quantification is absolute since a minimum and maximum
set size is given. In example 5, each tutor tutors at least
one and at most max tutor load courses. The relationship can
be further defined by join- terms in a where clause which
facilitates the automatic construction of instances,
utherwise, instances must be created manually using DML
commands. Maps can express injective, surjective, and
bijective maps. Tutors is injective; a tutor must be
associated with a course but a course need not have a tutor.
Since academic records depend on students and not vice versa
([0..*] means a lower limit of 0 and no upper limit)

Page 18

has academic record is surjective. Is enrolled is bijective,
since each student must have at least-one enrollment and each
enrollment is dependent on a student.

Example 5.
type tutors - map from t in tutor

to [l..max tutor load] c in course
end map;

is-enrolled =
map from s in student

to [l..n.ax student load) dependent e in enrollment
were s.number = e.student

end map;

has academic record =
map from s in student

to [0..*] dependent a in academic-record
w--ere s.number = a.stud-ent_#

end map;

Finally, assertions are generalized, first-order predicate
calculus expressions used to specify many types of
constraints. Existential (some), universal (all), and
absolute (exactly n, at most n, at least n) quantifTc-ation can
be used to specify existence and dependency constraints over
one or more object types. Relations are defined precisely by
means of Boolean expressions composed of -join terms (e.g.,
e.salary > e.deduction), restriction terms (e.g.,
p.salary@ > 15000), map terms (e.g., t tutors c), and scalar
terms (e.g., average[...J@ < 30000).

Example 6.
(professors earn between $15,000 and $30,000)
assert

all p in professor (p.salary@>15000 and p.salary@<30000);

(employee's salary must exceed deductions)
assert
alFe in employee (e.salary>e.deduction);

(tutors must have had at least a 9+ in courses they tutor)
assert

all t in tutor (some c in course (t tutors c and
exactl-ar in academic record (t has academicrecord ar
a is__rec--for c and ar.grade>B_plus))));

(the average professor salary is less than $30,000)
assert

average [each p.salary for p in professor]@ < 30000;

5.3 Formal Aspects

Beta has been defined axiomatically [Brodie 1978) following a
technique introduced by Hoare and subsequently used to
axiomatize Pascal [Hoare and Wirth 19731 and Euclid (London et

Page 19

al. 1978). The main purpose of axiomatizing a programming
language is to give both implementors and users a clear
definition of its semantics. Data types and executable
statements are defined by means of axioms, which give the
underlying properties, and inference rules, which define the
effect of operators. A secondary purpose of such a
formalization is to provide a basis for the proofs of programs
written in the language.

The main role of the axiomatization of Beta is to give a clear
definition of the semantics of databases specified using Beta.
This may be understood in terms of our conceptual framework.
If the data type categories and the type operators of the-LGDM
(the data type algebra) are defined axiomatically, we can
determine the possible schemas -- the properties of the legal
data types. Then, we can determine the semantics of valid
databases, i.e., what databases map onto given schemas. Such
a formalization of Beta is necessary due to our emphasis on
semantics and since several concepts, not typically available
in programming languages, have been introduced to accommodate
databases, e.g., keys, dependencies, and the data type
algebra.

The formalization of Beta fulfills two secondary roles related
to constraints. First, it defines precisely what constraints
can be expressed in an LGDM schema. The axioms define the
inherent and explicit constraints while the inference rules
define the implicit constraints. In this -way, the semantic
power of the LGDM and LGDM schemas can be analyzed. Second,
the axiomatization forms a basis for the verification of
constraint consistency and for the validation of databases
against given schemas.

The axiomatization of Beta is the rigorous statements of all
properties of each data type category and of each type
operator in Beta. The properties of a data type category are
those properties shared by all data types of that category.
Hence, the data type specification model, presented earlier,
has been generalized to form a specification model for Beta.
A data type category, T, can be defined formally by the axioms
and inference rules required by the m9 del, i.e., <V(T), AV(T),
C(T), AC(T), O(T), AO(T), ID(T)> as defined above. V(T) and
AV(T) define the possible value sets for types under T.
AC(T), the type operators, define the possible compositions of
T from C(T). AC(T) are defined in terms of Boolean algebra
and set theory. O(T) and AO(T) define properties of token
operators and ID(T) defines identification rules for types in
the category T.

5.4 Programming Language Aspects

By integrating data type and database concepts in a
programming language framework, Beta addresses the problems
raised by both self-contained and host-language interfaces to
databases. On the one hand, self-contained interfaces are not
rich enough to express special purpose algorithms, e.g., list

Page 20

and string processing, according to the widely accepted
principles of high level languages. On the other hand, host
language interfaces present users with two rather different
sets of concepts, two database models, two languages, and two
programming techniques. These interfaces tend to be provided
through rather cryptic interfaces such as parameterized
procedure calls. These issues hinder the design,
construction, analysis, and use of databases. Beta
demonstrates that a high level or special purpose language can
be extended, through its data types, to include database
facilities in keeping with the philosophy of the programming
language. Hence, databases and programming languages can be
related in a rather intimate way.

The data type extensions introduced in Beta require
corresponding extensions to type checking techniques. Many
standard type properties can be verified using conventional
type checking augmented by the "same type" concept from Euclid
[Popek et al. 1977]. Two types are compatible under certain
operations only if they are the same, that is, if they have
the same specification after all type identifiers have been
replaced by their specification until only interpreted type
identifiers remain. However, Beta incorporates an extension
of the relational calculus, e.g., restrictions, maps, and
assertions are expressed as predicates. Hence, new type
checking techniques are required to verify and validate Beta
schema specifications [Brodie 1978]. Due to both theoretical
and run time problems (e.g., decidability and existence)
practical verifiers cannot verify and validate all properties.
Therefore, semantic integrity assertions (legality assertions
in Euclid) should be emmitted for those properties beyond the
means of the verifier. If they are verified, by some other
means, and validated with respect to a given database, the
schema and the database are said to exhibit semantic
integrity.

5.5 Database Design Using Beta

One of the main goals of Beta is to aid database design. In
terms of the above development, the problem can be expressed
as follows: Given an informally described application model,
the properties of entities and relationships of interest,
specify them formally as constraints using Beta so that the
result exhibits semantic integrity. Two of the major problems
faced by database designers are those of complexity and
semantics. We now consider how Beta addresses these problems
and facilitates schema design.

Not unexpectedly, the principles for good schema design are
precisely those for structured programming and other software
engineering disciplines. A schema should be lcgically
complete with respect to both the application and itself. It
should be minimal, i.e., non-reuundant, and abstract, i.e.,
neither users nor implementors should be restricted to
particular representations. A schema munt be consistent,
i.e., exhibit semantic integrity. It should be comprehensible

Page 21

to a user or implementor, with a minimum of difficulty.
Finally, a schema should be extensible and modifiable, i.e.,
it should remain stable under reasonable and inevidable
changes. A necessary requirement for all of these properties
is a good logical structure.

The most effective tools designed to achieve these goals are:
abstraction, successive decomposition, layers of abstraction,
modularity, and techniques for software specification and
verificatoion. These tools, developed in terms of programming
languages and data types, have been built into Beta. Hence,
Beta directly supports a number of software engineering
techniques, not typically applied to databases, for the design
of "good" schemas.

The principal design tools of Beta are abstraction,
modularity, and the concepts of specification and
verification. Abstraction, both aggregation and
generalization, is supported directly by the data type
algebra. Structural modularity is the coherent grouping of
structural abstractions to form meaningful units which
encapsulate and hide structural details and which can be
components of other modules. Structural modularity can be
achieved using the Pascal based type specifications.
Together, abstraction and modularity can be used to achieve
layers of abstraction through successive decomposition. The
concept of. schema specification aids design by introducing a
step between the informal application modl and the schema
representation. The essential, logical aspects of a schema
can be designed while the inessential details, such as
representation, can be ignored. Finally, the axiomatization
of Beta provides two design aids. First, the semantics of
each specification can be readily determined. Second, the
axioms and inference rules form a basis for verification which
can be used to test the semantic integrity of intermediate and
final design decisions.

A schema design methodology, based on the above tools, has
been proposed for Beta [Brodie 1978]. It extends the
methodology of [Smith and Smith 1977] which produces
generalization and aggregation hierarchies by means of
successive decomposition. Based on modelling experience in AI
and network databases, it was found that schemas are typically
complex networks of entity types related by aggregation and
generalization, and by more general relations. Hence, one
extention is to permit more complex relations expressed via
maps and assertions, as well as through more powerful
generalization relations (e.g., intersection, union,
restiction). Rather than being hierarchies, the resulting
schemas are networks. As observed in software engineering,
design is not a purely top-down process; indeed Hammer (1976]
argued that database design is inherently a data up process.
Using successive decomposition, it is not always clear what
the highest level abstractions should be, nor what
modularization is appropriate. Also, redesign and inevidable
change is not easily accommodated, except for further
decompositions; A second extension is to permit synthesis,

Page 22

the opposite of decomposition; the data type algebra supports
bottom-up design, since abstractions can be composed to form
higher level abstractions.

The schema design methodology is based on the abstraction
processes, aggregation and generalization, and uses both
decomposition and synthesis. Aggregation uses decomposition
to determine the constituents of an object and synthesis to
construct aggregate objects. Generalization uses synthesis to
classify similar objects under a generic object and
decomposition to determine distinct subsets of a generic
object.

Beta facilitates database design by means of built-in software
engineering tools. Problems of complexity are addressed by
the simplicity of the database model (a small number of type
categories and operators) and by the direct support of
abstraction and modularity. Semantic problems are addressed
by presenting a semantically rich, axiomatically defined
database model. Both issues are addressed by verification
which can be used to ensure the semantic integrity of complex
schemas and to test such properties as minimality and
completeness. Based on the above and other software
engineering concepts, [Brodie 1979] presents a framework for
the design and development of database applications.

4L

Page 23

6. Summary

Due to the pragmatic, informal and somewhat independent
development of database concepts, many obstacles are faced by
database designers, users, and implementors. In particular,
semantic issues concerning non-representational, or abstract,
structure have not been adequately addressed. Hence, there
are few effective database tools for these problems. However,
well-defined, widely accepted concepts and tools have been
developed to address similar issues in programming languages
and AI. By applying data type concepts to databases, some
basic database concepts have been formalized and databases
have been related to the more widely understood area of
programming languages. This approach has addressed long
standing discrepencies between programming languages and
databases (Atkinson 1978].

Data type concepts were extended to meet the semantic
modelling needs of databases. Abstraction mechanisms were
introduced and structuring rules were generalized to form the
data type algebra. A semantically rich database model, the
LGDM, was designed to meet well-known database model criteria.
Although semantic problems and their solutions are unlimited,
techniques were presented to handle some semantic issues.
Data type and database concepts were integrated in a
programming language framework. Beta, a schema specification
language, can be used to specify precisely application
semantics expressible .'a structure. Beta'and the LGDM have
been axiomatized in [Brodie 1978] to give a formal defintion
of their semantics and to act as a basis for semantic
integrity verification. Finally, a database design
methodology, based on software engineering tools supported
directly by Beta, was discussed.

Although behavioural semantics were assiduously avoided n
this paper and by many researchers in database semantics and
schemas, behavioural properties are an integral part of the
semantics of databases. Currently, the above concepts are
being extended to include behaviour using another programminq
language concept, namely, abstract data types.

Acknowledgements

The author is grateful to J. Schmidt and D. Tsichritzis for
their comments on an earlier version of this paper.

References

Abrial, J.R. [1974] Data Semantics. Database Management,
Klimbie, J.W. and Koffeman, K.L. (Eds.), North-Holland
Publ. Co., Amsterdam, The Netherlands.

ANSI/SPARC (1977] The ANSI/X3/SPARC DBMS Framework. IFIPS
Press, Montvale, N.J., U.S.A.

Atkinson, M.P. [19781 Programming languages and data
bases. Proc. Int'l Conf. on Very Large Databases,
Sept. 1978.

Bachman, C.W. and Daya, M. [1977] The role concept in data
models. Proc. Int'l Conf. on V Large Databases,
Oct. 1977.

Bernstein, P.A. [1976] Synthesizing third normal form
relations from functional dependencies. ACM TODS 1,4
(Dec. 1976).

Biller, H. and Neuhold, E.J. [19781 Semantics of data bases:
The semantics of data models. Information Systems 3, 1
1978.

Brodie, M.L. (19781 Specification and verification of
database semantic integrity. Ph.D..thesis, CSRG-91,
U. of Toronto.

Brodie, M.L. [19791 Data quality: data reliability and
semantic integrity. Proc. INFOTECH Conf. on Data
Design, London, September 1979.

Brodie, M.L. and Schmidt, J.W. [1978) What is the use of
abstract data types in databases?. Proc. Int'l. Conf.
on Very Large Data Bases, Berlin, September 1978.

Codd, E.F. (19701 A relational model for large shared data
banks. Comm. ACM 13, 6 (June 1970).

Gotlieb, C.C. and Gotlieb, L.R. [1978] Data Types and
Structures, Prentice Hall, Englewood C-iffs, N.J.

Guttag, J.V. [1975] The specification and application to
programming of abstract data types. Ph.D. thesis,
CSRG-59, U. of Toronto, Sept. 1975.

Hammer, M.M. [19761 Data abstraction for daca
bases. Proc. Conf. on Data: Abstraction, Definition and
Structure, SIGMOD FDT ,-T (Ma-r-h71A .

Hammer, M.M. and McLeod, D.J. [1978] The semantic data
model: A modelling mechanism for database applications.
Proc. ACM SIGMOD 1978, ACM New York.

Hoare, C.A.R. [19721 Notes on data structuring. APIC Studies
in Data Processing No, 8: Structured Programming,
Academic Press, New York.

Hoare, C.A.R. [1975) Data reliability. Proc. Int'l Conf. on
Reliable Software, SIGPLAN Notices 10, 6 (June 1975).

Hoare, C.A.R. and Wirth, N. [19731 An axiomatic definition
of the programming language Pascal. Acta Informatica 2.

Jensen, K. and Wirth, N. [1974) PASCAL User Manual and
Report, 2nd Ed., Lecture Notes in Computer Science, M,
Springer-Verlag.

Kent, W. [19791 Limitations of record-oriented information
models. ACM TODS.4, 1 (March 1979).

Lampson, B.W., Horning, J.J., London, R.L., Mitchell,
J.G. and Popek, G.J. 119771 Report on the programming
language Euc,. Ld. SICPLAN Notices 12, 2 (Feb. 1977).

Liskov, B.H. and Zilles, S.N. [19741 Programming with
abstract data types. Proc. Symposium on Very High Level
Languages, SIGPLAN Notices 9, 4 (April-194).

Liskov, B.H. and Zilles, S.N. [1975] Specification
techniques for data abstractions. Proc. Int'l. Conf. on
Reliable Software. SIGPLAN Notices 10, 6 (June 1975).

London, R.L., Guttag, J.V., Horning, J.J., Lampson, B.W.,
Mitchell, J.G. and Popek, G.J. [1978] Proof rules for
the programming language Euclid. to appear Acta
Informatica.

McGee, W.C. [1976] On user criteria for data model
evaluation. ACM TODS 1, 4 (Dec. 1976).

Morris, J.H. [1973] Types are not sets. Proc. ACM Symposium
on Principles of Programmming Lanpuaq2es, Oct. 1973.

Parnas, D.L., Shore, J.E. and Weiss, D. [1976] Abstract data
types defined as classes of variables. Proc. Conf. on
Data; Abstraction, Definition, and Structure, §I MO-D
FDT 8, 12 (March 1976).

Pelagatti, G., Paolinii, P. and Bracchi, G. [1978] Mapping
external views to a common data model. Information
Systems 3, 2 1978.

Popek, G.J., Horning, J.J., Lampson, B.W., Mitchell,
J.G. and London, R.L. [1977] Notes on the design of
Euclid. SIGPLAN Notices 12, 3 (March 1977).

Roussopoulos, N. 11976] A semantic network model for data
bases. Ph.D. thesis, Dept. of Computer Science, U. of
Toronto.

Schi'id, H.A. an,- Swenson, R.J. [19751 On the semantics of
relational data model. Proc. ACM SIGMOD 1975, ACM New
York.

I

Schmidt, J.W. (1977] Some high level language constructs for
data of type relation. ACM TODS 2, 3 (Sept. 1977).

Schmidt, J.W. [19781 Type concepts for database
definition. Proc. Int'l Conf. on Databases: Improving
Reliability and Responsiveness, Haifa, Israel,
(Aug. 1978).

Smith, J.M. and Smith, D.C.P. [1977] Database abstraction:
Aggregation and generalization. ACM TODS 2, 2 (June
1977).

Wegbreit, B. [1974] The treatment of data types in ELI.
Comm. ACM 17, 5 (May 1974).

Wong, H.K.T. and Mylopoulos, J. [19771 Two views of data
semantics: A survey of data models in artificial
intelligence and data management. INFOR 15, 3
(Oct. 1977).

